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Recovery of molecular weight distributions from transformed domains.
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Abstract

This work is a part of a study aiming at developing tools for the prediction of complete molecular weight distributions (MWDs) of
polymers at the exit of a reactor. This reactor may be a synthesis reactor or one used to modify a preexisting resin. In this work, we analyse the
suitability of three methods for the numerical inversion of probability generating functions (pgfs), those due to Papoulis, de Hoog and
Garbow. The three methods have been proposed in the literature for the inversion of Laplace transforms. We show how to adapt them to the
problem at hand, and apply them to two situations. The first one is the recovery of experimentally measured MWDs, through a process that
consists of finding the pgf of the distribution, numerically inverting it and comparing the result with the known MWD. The second one is to
solve the pgf balances of polymerisation systems with known MWDs, and comparing those MWD with the ones that result from the inversion
with the three methods. We discuss the relative advantages of each inversion method and propose guidelines for their proper use with
unknown MWD functions. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Molecular weight distributions; Pgf transforms; Numerical inversion

1. Introduction

This is the second part of an investigation that aims at
developing alternative tools for the calculation of molecular
weight distributions (MWD) in reactive processes where
polyolefins are either produced or modified. If one sets out
to write mass balances and discriminates species by chain
length, an infinitely large system of equations results. In Part
I of this work [1] we review the techniques available to deal
with infinite mass balances and present a detailed descrip-
tion of the use of probability generating functions (pgfs) for
solving MWD both in polymerisation and post-reactor
systems. The method results in a finite set of pgf balances,
which must then be solved using either analytical or numer-
ical methods. The pgf is really a transform technique, and
when dealing with polymerisation systems the resulting
transform function contains information on the complete
MWD. An inversion step must follow in order to recover
this MWD. If the system of pgf balances had to be solved
numerically, as is usually the case with polymer systems, no
analytical expression for the pgf is available, and a numer-
ical inversion must be performed. We have already shown
[2] that under certain conditions, pgf transforms are equiva-
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lent to the Laplace transform. For the latter, there is much
work published on numerical inversion methods [3].

As part of this investigation, we have already performed
an experimental validation of two numerical inversion
methods [2], the ones proposed by Gaver [4] and Stehfest
[5,6] for Laplace transforms. They were applied to recover
the MWD from pgf transforms in low-density polyethylene
autoclave reactors [7] with very promising results.
However, they sometimes produce negative responses
when the pgf is affected by numerical noise [2], and in a
few of the cases analysed [7] they fail to reproduce accu-
rately the complete MWD. In the latter situation it could not
be determined whether the error was due to the inversion
algorithm itself, to an inaccurate kinetic mechanism, to error
propagation in the integration of the differential equations,
or to experimental uncertainties. As Davies and Martin [3]
recommend in their extensive review of Laplace transform
inversion methods, it is convenient to use more than one
method on an unknown function, to increase confidence in
the results. This seems to be the only way to rule out the
inversion algorithm as the source of inaccuracies in the
predicted MWD.

Since the inversion methods are numerical, the MWD is
recovered not as a continuous function but as a set of values
at particular degrees of polymerisation. If one wants to
change the degree of polymerisation (DP) at which the
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MWD should be calculated (to have more points, for
example) both Gaver’s and Stehfest’s algorithms require
evaluation of the pgf at different values of the independent
variable. This means that as more points of the MWD are
calculated, a larger system of pgf balances must be solved
and inverted. There are other algorithms that do not present
this drawback [3]. These facts encouraged us to continue
testing other inversion methods.

In this work, we analyse the feasibility of applying some
of those inversion methods for the special case of pgf trans-
forms that describe MWD. Specifically, we study the
methods developed by Papoulis [8], de Hoog [9] and
Garbow et al. [10,11] to work with Laplace transforms.
We implement Papoulis’ algorithm in Fortran code. The
other two algorithms are used as implemented in commer-
cial software [12]. First, we perform a validation of the
inversion methods using measured polymer MWDs cover-
ing a wide range of polydispersities. We start from these
MWD, transform them, and then apply the numerical tech-
niques to try to recover the distribution. We use ‘clean’
transformed distributions as well as others where noise
has been incorporated, with the aim of simulating the uncer-
tainty in the transformed domain that would result from
numerical calculation. We develop techniques to tune the
performance of the inversion methods with this special kind
of functions (MWD), and also determine their accuracy. All
the methods studied here, as well as the two previously
presented, require the user to fix the value of some arbitrary
parameters, which turn out to be crucial to obtain appropri-
ate results. We discuss the quality of the recovered distribu-
tions and suggest guidelines for establishing the reliability
of a given solution. We also make a comparative analysis
between all the considered methods.

As a further test we apply the validated methods to calcu-
late MWD from polymerisation reaction mass balances,
solving some examples presented by Miller et al. [13].
The pgf balances for those examples were developed in
Part I of this work [1].

2. Adaptation of inversion algorithms for the Laplace
transform for the recovery of MWDs described by pgf

In general, F(s)= [y e “f(t)dr is the well known
Laplace transform of a function f(z).

MWDs are discrete functions that can be considered as
periodic impulse functions of period one. At this point, this
type of distribution may be considered as a generic function
f(?). The independent variable ¢ represents the DP; the
dependent variable could be any quantity representing
number or mass of molecules with a given DP. The corre-
sponding Laplace transform is given by Eq. (1), where f(¥)
stands for the periodic function.

F(s)=Y e () 1)
=0

On the other hand, Eq. (2) defines the pgf for discrete
functions.

by =D P, N=1 a=0,1.2 2)

=0

where P,(N = t) represents the probability of an event .
Subscript a indicates the type of probability [1], as indicated
later. In the case of the MWD, P,(N =) would be the
probability that the DP of a molecule is ¢ (DP =1).
This probability could be the number (a =0), weight
(a = 1) or chromatographic (a = 2) fraction of molecules
with DP 7. By chromatographic we mean that the quantity
of interest is the weight times the molecular weight.

We have already shown [2] that, with the appropriate
variable change, the pgf is equivalent to the Laplace trans-
form of the MWD. If we look at their definitions (Egs. (1)
and (2)), if f(¢) is the same as P,(N = ¢) the equivalence is
obtained when z = e*. This equivalence allows the use of
the same inversion techniques on Laplace and pgf trans-
forms to recover the original, untransformed functions.

In what follows, we proceed to describe the three inver-
sion algorithms analysed in this work. We also describe our
findings on how to use them in order to obtain a good
recovery of the MWD.

2.1. Papoulis’ inversion method [8]

This method consists of approximating the unknown
function f(¢) as a weighted sum of orthogonal polynomials.

N
f@ = a,Pye" 3)
n=0

where a,, are constant coefficients, N indicates the number of
terms in the sum and P,,(x) are Legendre polynomials of
degree 2n. These polynomials can be calculated with the
recursive formula given in Eq. (4), where x = ¢ "

Py(x) =1, Pix)=x
“4)

(n+ DP,1(x) = 2n + DxP,(x) — nP,_(x)

It must be noted that r is a parameter whose selection deter-
mines at which points the transform of f(#) must be calcu-
lated during the inversion procedure, as shown later. A
proper choice of parameter r is required for an accurate
inversion.

Taking the Laplace transform F(s) of Eq. (3), and setting
the transform variable at the values s = (2k + 1)r with
k=0,1,...,N, the following expression is obtained:

Ko(k—m+1
Pk + D=y 4;@ +ml/2) )’”] a,
m+

m=0

k=0,1,...,.N

&)

where the terms in parentheses at the right hand side
of Eq. (5) may be written in generic form as (j); and
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calculated as follows:

1 [=0
(j)z={_. ) (6)
jGg+D(G+I—-1) 1[>0

From the generic expression in Eq. (5) a system of N + 1
linear equations is obtained, from which the a, can be
readily solved. The values of the Laplace transforms are
the only required data for the calculation of the a,, since
these coefficients depend on the Laplace transform and the
parameter r, but not on z. Thus, the whole f(¢) can be recov-
ered with a single set of transform values, provided the
parameter r is not changed. This feature can save a consid-
erable amount of time when the transform evaluation is
time-consuming. Papoulis [8] does not give examples of
application of the method. Davies and Martin [3] tested
this method among others, covering a wide range of differ-
ent classical analytical functions, with varying results.
According to their results, the method we selected was the
most accurate, especially with distribution-type functions.
However, Davies and Martin [3] used a small range of the
independent variable 7 in their analysis: from 1 to 30. In
MWD functions the independent variable covers a much
wider range, which can easily span five orders of magnitude.
This fact causes difficulties, especially when assigning
suitable values to the parameters.

For our work, we implement the algorithm in double
precision Fortran code. Each time F(s) is required by the
algorithm, the pgf evaluated at z = e¢™° must be provided.
As explained before, this method requires the user to specify
the values of parameters N and r. The unknown function
f(#) = MWD(DP) is obtained from the transform domain by
using values of the transform function at a series of equidi-
stant points s, determined by r:

s =Qk+ Dr  k=0,...N )

Besides, r also weighs the value of the independent variable
¢t when evaluating the Legendre polynomials in Eq. (4). An
inappropriate value of r will cause the inversion formula to
fail. In his work, Papoulis suggests calculating r from

e*rT — l (8)

where 0 < ¢ < T is the interval in which f() is to be recov-
ered. Papoulis also mentions that if f(7) is needed near the
origin or for large values of 7, f(#) must be evaluated with
different values of r. The latter is our situation, for values of
the untransformed variable near and far from the origin
correspond to low and high molecular weights, respectively,
in an MWD.

In agreement with the comments made by Papoulis
[8], our results show that a single value of r (calculated
from Eq. (8)) is not adequate for the recovery of
MWD(DP) for both small and large values of DP (DP =
1-300000). In view of this result, we divided the DP range
in a series of T; (where T; is the maximum DP value in the

interval), and used a different value of r in each one of them.
To recover MWD(DP) for DP between 7T; and T;.;, we
calculated r;;; with Eq. (8) and also with a variation of it,
which also proved to be effective:

1

-2rT

— 9
e = 2 ©)

In both expressions, we set T = T;, ;. We will show results
with the DP range divided into six, 12 and 24 intervals. It
must be remembered, however, that increasing the number
of different values of r increases the number of transform
evaluations needed.

Parameter N determines the number of terms to use in the
summation in Eq. (3). Too small a value of N results in poor
accuracy in the calculation of MWD(DP), but too large a
value introduces noise due to error propagation. For the
cases we tried, the system of equations from which the a,
are calculated became ill-conditioned for large values of N.
The goodness of the solutions for the methods depends on
the value of N. For this reason it is important to develop
guidelines for the choice of N.

In the search of guidelines, it was necessary to quantify
the error made in the recovery of particular MWDs. For this
purpose two measures of error were evaluated. When
experimental MWD are available for comparison, we
defined SSQ as the sum of the squared differences between
the true and the recovered MWDs, as indicated in Eq. (10)

S8Q = Z (xnpp, — )’DP])2 (10)

=1

where n, is the total number of DP points at which the
distribution is being recovered; x and y are the calculated
and true MWD in number (MWD,), weight (MWD,,) or
chromatographic (MWD,) basis.

A different measure of error is used for the situations
where no experimental MWD is available for comparison.
It is the sum of the squared differences between two curves
calculated with successive values of N:

Ty

SSQ1 = Z(XN,DPj - yN+],DPj)2~ e3Y)

J=1

2.2. de Hoog’s inversion method [9]

In this case, the computation of the inverse Laplace
transform is based on the application of the epsilon algo-
rithm [14] to the complex Fourier series obtained as a
discrete approximation to the inversion integral. The initial
algorithm was proposed by Crump [15] but was signifi-
cantly improved by de Hoog et al. [9]. Given a complex-
valued transform F(s), the trapezoidal rule gives the
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following approximation to the inverse transform:

Ty Y 1 < ik ikt
£ = e /T)%{EF(a) +];F<a + 5 Jexo( T )}
(12)

where #{ } is the real part of the sum of a complex power
series in exp(im#/T), and T is the period. The algorithm
accelerates the convergence of the partial sums of this
power series by using the epsilon algorithm [14] to
compute the corresponding diagonal Pade approximants.
The algorithm attempts to choose the order of the Pade
approximant to obtain the specified relative accuracy (&)
while not exceeding the maximum number of function
evaluations allowed. The parameter « is an estimate for
the maximum of the real parts of the singularities of . An
incorrect choice of a may give false convergence. Even
in cases where the correct value of a is unknown, the
algorithm will attempt to estimate an acceptable value.

In the original version of the method by Crump [15], the
algorithm was tested with three analytical functions with
accurate results. A small range of the independent variable
was used: from 1 to 10. For the MWD recovery, we employ
the algorithm implemented in the IMSL [12] subroutine
DINLAP, which requires the user to specify the desired
relative accuracy, the parameter « and the maximum
number of iterations allowed (k,,.x). Whenever the algorithm
requires F(s) the value of pgf evaluated at z = e must
be provided.

Parameter a of this method cannot be calculated if the
analytical transform of the function to be recovered is not
available. In this case, its value must be set to 0, as advised
in Ref. [12]. This is our case, and it seems important to say
that this will also be the case in the final application of the
inversion methods, where the transforms are obtained
through integration of the mass balance. The maximum
number of iterations (k) does not affect the quality of
the inversion, it just determines the size of the problem to
be solved. The user must specify the only remaining
parameter, the relative accuracy. Its value will affect the
quality of the inversion.

Preliminary numerical experiments with different
polymer MWDs indicated that a high value of the rela-
tive tolerance led to inaccurate inversions. This is not
surprising, but we also found that small values also led
to unsatisfactory results. In order to select an appropriate
value, a procedure equivalent to the one used to select N
in Papoulis’ method was followed. Fifteen values of the
relative accuracy were considered, covering the range
from 5% 107 to 1x107° The range and the number
of different values of the parameter were selected after
a trial and error procedure.

2.3. Garbow’s inversion method [10,11]

The computation of the inverse Laplace transform is
based on a modification of Weeks’ method [16] due to

Garbow et al. [10,11]. This method is suitable when f ()
has continuous derivatives of all orders on [0,00). It is espe-
cially efficient when multiple function values are desired. In
particular, given a complex-valued function F(s), we can
expand f in a Laguerre series whose coefficients are deter-
mined by F. This is fully described in Garbow [10,11] and
Lyness and Giunta [17].

The algorithm attempts to return approximations g(¢) to
f(t) satisfying

010, .

where & is the specified relative accuracy and o > oy.
o, is the maximum of the real parts of the singularities
of F. The expression on the left is called the pseudo error.

The first step in the method is to transform F to ¢ where

b b b
0= 5 +9) (14)

In this expression, b is one of the algorithm’s parameters.
Then, if fis smooth, it is known that ¢ is analytic in the unit
circle of the complex plane and hence has a Taylor series
expansion

d =Y ail (15)
=0

which converges for all { whose absolute value is less than
the radius of convergence R..

The coefficients of the Taylor series for f can be used to
expand f'in a Laguerre series

fOy=e"> a;e " Lybr) (16)

=0

In the original work [10,11], the algorithm was analysed by
means of tests similar to those found in the work by Davies
and Martin [3]. The authors mention (without quantifying)
that for continuous functions their method gives results of
comparable accuracy to those tested by Davies and Martin
[3] but with much less computational effort. This method,
however, presents poor results with discontinuous functions.
The independent variable ranged from 1 to 30 in their work
in order to agree with the examples given by Davies and
Martin.

Here, we employed the algorithm implemented in the
IMSL [12] subroutine DS2NLP, which requires the user to
specify the value of ¢, b, 0, 0 and m.,. With respect to F(s)
it is provided as the pgf evaluated at z = e *, as in the other
methods.

Parameter o of this method is equivalent to parameter «
of de Hoog’s method, and it must be also set to 0 if its actual
value is unknown. The treatment of the remaining ones is
explained later.
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Table 1
SSQ values for MWD calculation with Papoulis’ method
N From pgf, From pgf,, From pgf.

MWD, MWD,, MWD, MWD, MWD, MWD, MWD, MWD, MWD,
11 0.04338 5.19301 6.44747 0.81663 0.00647 3.99794 6.76166 0.88829 0.01134
12 0.04242 5.25655 6.38695 0.18215 0.00801 4.69391 70.15241 0.15895 0.00933
13 0.04096 4.53500 11.94266 1.29358 0.00586 2.90307 3.22641 1.40775 0.00602
14 0.04897 30.60128 105.43150 2.24979 0.00558 11.71067 15.41539 2.09531 0.00881
15 0.04807 4.52860 8.57361 1.21358 0.00498 3.88632 3.17534 1.04186 0.00416
16 0.05164 4.74645 6.93323 0.41424 0.00520 4.23584 10.29978 0.23519 0.00350
17 0.05311 3.99048 6.25733 1.44903 0.00506 4.01037 6.36853 0.83347 0.02403
18 0.06241 10.35842 9.53245 1.44242 0.00516 4.65685 3.20439 1.32578 1.23295
19 0.05477 19.01860 114.60260 2.46592 0.05840 10.79333 534.35400 1.26652 4.39494
20 0.08449 875.36770 1.05 x 10° 1.27037 1.66207 2.9x 10* 3.38171 0.90609 872.09100

2.3.1. Parameters b and o
Garbow et al. [10,11] suggest calculation of these para-
meters in the following way:

3
and
b=2.5(0— ggp) (18)

where 0 =t =T.

Due to the wide range of DP in the function MWD(DP),
this suggestion does not work properly. Completely
erroneous MWD are predicted in this way. To solve this
problem, the DP interval was subdivided and the parameters
were calculated in each subinterval in the following fashion

g~ 0y = % (19)
and

b; =2.5(0; — 0y) (20)
where

cT;_y <DP = cT; (1)
and

T, = 107015+ 0250) 22)

From numerical simulations we found ¢ = 0.6 and a = 4 to
be suitable choices for most cases.

2.3.2. Parameters & and my,,

Parameter m,, is required for the method to provide an
upper limit to the summation of the Laguerre expansion
[12]. As kpa in de Hoog’s method, my,, determines the
size of the problem and has no influence in the performance
of the algorithm. With respect to &, the minimum value that
allows convergence appears to be a good choice. Here we
used values ranging from 1 X 10> to 1 X 107"

2.4. Method used for experimental validation

Five polyethylenes (PE1, PE2, M2, M3, M7) and two
polystyrenes (PS4, PS8) of very different MWDs were
used to carry out the experimental validation. The polydis-
persity of the various samples ranged from 1.1 to 69. These
samples are the same used to validate other inversion
methods reported in Brandolin et al. [2].

MWDs of the polymer samples were obtained by size
exclusion chromatography (SEC) in a Waters 150C,
according to standard procedures for each type of polymer.

The measured average molecular weights were reported
in a previous work [2], while measured MWDs are shown in
Section 3. These distributions are expressed mostly in
chromatographic basis (MWD,). The distributions are also
expressed in number (MWD,) or weight basis (MWDy,).
The number (n;), weight (w;) and chromatographic (c;) frac-
tions of molecules in the ith fraction of the chromatogram
are obtained by manipulation of measured data as reported
elsewhere [2].

To calculate the pgfs of number, weight and chroma-
tographic distributions Eqs. (23)—(25) were employed.
These are an adaptation of Eq. (2) to the experimental
distributions. Here, and from now on, the untransformed
variable t of Eq. (2) is the chain length or degree of
polymerisation, DP.

Imax

N,0(Z) = npp, +i-1% -

d) ( ) DP, +i—1 (23)
i=1

On1(2) = ZWDPlJrileDP]H_l (24)
i=1

dna(2) = ZCDP,+i—1ZDP1+i_1 (25

i=1

To accomplish the summations indicated in Eqgs. (23)—
(25) it was necessary to evaluate the distributions begin-
ning at the lowest available DP (DP;) and advance with
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Table 2
SSQ values obtained at the value of N at which either SSQ1 or SSQ is
minimum, for different interval partitions

MWD SSQ Nssal,, SSQuin Nssq,,
imax = 6

Number 0.05311 17 0.04096 13
Weight 0.00506 17 0.00498 15
Chromatographic 0.00933 12 0.00350 16
iﬂ18X = 12

Number 0.05127 15 0.04980 14
Weight 0.00231 17 0.00231 17
Chromatographic 0.00880 15 0.00552 15
imax = 24

Number 0.06854 17 0.05109 13
Weight 0.00226 17 0.00167 14
Chromatographic 0.00908 15 0.00338 12
e = 24"

Number 0.06467 16 0.04929 9
Weight 0.00227 16 0.00180 13
Chromatographic 0.00583 16 0.00491 9

step one up to DP; + i, — 1. Cubic splines [18] were
applied to the experimental data to obtain all the infor-
mation needed to calculate Egs. (23)—(25).

It is always possible to go from one type of MWD
MWD,, MWD,, or MWD,) to any one of the other two
by direct calculation. Thus, we not only recovered each
MWD from its own transform, but also calculated it by
manipulating the inversions of the other two. All calculated
values were then compared with the experimental data. This
comparison was carried out using as index the value of SSQ

(Eq. (10)).

3. Results and discussion
3.1. Experimental validation

3.1.1. Papoulis’ inversion method

First we analysed which pgf is the best to employ in the
recovery of each type of MWD. Table 1 shows the values of
SSQ that result when MWD,, MWD,, and MWD, are
obtained from each pgf in the case of polyethylene M7.
The remaining polymers present equivalent results. For
these results, the DP interval was divided into six parts in
the following way:

24
i=1,2,.. 0y =06 a= — (26)

Liop

T = 10—().15+(0.25a)i
i

Similar behaviours are observed when the interval is divided
in 12 or 24 parts (setting the range of variable i from 1 to 12
or from 1 to 24 in Eq. (26), respectively).
It may be observed that lower errors are obtained when
each distribution is recovered from its corresponding pgf.
The values in Table 1 also show that different errors are

obtained with different values of N. If the experimental
distribution is not known, as is the case when the transform
is obtained from a polymerisation model, it is necessary to
have an approach to select a good value of N.

In a previous work by the authors [2], other methods for
the numerical inversion of Laplace transforms were studied.
These methods were similar to the one by Papoulis in that
they also performed a sum were the number of terms (N) had
to be determined. The same approach that was suggested
there for the estimation of an optimum N is used here:
performing the inversion for different values of N, and
then selecting the curve that presents the lowest SSQI
(Eq. (11)).

Table 2 shows the results obtained with this procedure for
six, 12 and 24 partitions of the interval, when inverting
MWDs of polyethylene M7 (each MWD is recovered
from its corresponding pgf). The numbers under the 24’
were obtained using Eq. (8) to calculate r. For the other
cases, Eq. (9) was used.

The columns labelled SSQI,,;, give the values of the
selected Ns and the SSQ of the curves obtained with
them. The columns labelled SSQ,;, give the value of N
for which the lowest SSQ results, and this SSQ value.

It can be observed that the selected N is generally
different from the actual optimum N. However, the SSQ
corresponding to the selected N is similar to the lowest
SSQ. This means that the procedure to select N gives a
good value of this parameter. The values of N that cause
important errors are eliminated in this way.

It may also be observed that there appears to be no
differences in the accuracy of the inversions when the
interval is divided into six, 12 or 24 subintervals, nor with
the equation selected to calculate r, for similar SSQ values
are obtained in these situations.

Figs. 1 and 2 show the MWDs of the six different
polymers, calculated with the above technique (A symbols),
compared with the respective measured MWD (lines).

3.1.2. de Hoog’s inversion method

As in the analysis of the previous method, one must find
out from which type of pgf (number, weight or chromato-
graphic) is it better to recover each type of MWD. For
polymers M2, M3, PEl and PE2 only when inverting
from the pgf. the method converges with values of the
relative accuracy less than 1 X 10~*. Besides, the SSQ1
method for selecting the optimum relative accuracy fails
when working with pgf, and pgf,. On the other hand, the
SSQ1 method works well with the pgf. of all polymers. This
implies that pgf. should be used with this method for
recovering the three types of distributions from the
transform domain.

Table 3 shows the results obtained for polymer M7. Figs.
1 and 2 show the MWDs of the six different polymers
calculated with the above technique (O symbols) compared
with the measured ones (lines).
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Fig. 1. Experimental and calculated distributions for polymers M7 and M2. Lines: experimental; A: Papoulis inversion; O: de Hoog inversion; l: Garbow

inversion.

3.1.3. Garbow’s inversion method

Table 4 shows the SSQ values when the three MWDs are
obtained from the three pgfs. In this case, we present results
for all the polymers used in the validation.

As shown in the table, the best results are obtained when
each MWD is recovered from its corresponding pgf.

Figs. 1 and 2 show the graphs of the MWDs correspond-

ing to the cases highlighted in ‘bold’ in Table 4 (M
symbols).

The three methods are able to recover the MWDs from
the pgf transform domain with good accuracy. Papoulis’
method is the one that demands less computational effort,
because it uses only real values of the transformed variable.
Methods that use a complex transformed variable double the
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Fig. 2. Experimental and calculated chromatographic distributions for polymers PS8, PS4, M3, PEl and PE2. Lines: experimental; A: Papoulis inversion;
O: de Hoog inversion; l: Garbow inversion.

Table 3

SSQ values obtained at the value of relative accuracy (&) at which either
SSQ1 or SSQ is minimum, for M7 MWD calculated with de Hoog’s method

MWD €55Ql,,, SSQ €55Q,n SSQuin

Number 75%107° 001712 50x107°  0.01661
Weight 75%107*  0.12140  5.0x107®  0.00154
Chromatographic ~ 2.5x107®  0.00580  1.0x10™°  0.00572

size of the problem to solve, as the real and imaginary parts
of the transformed variable must be treated as two different
variables (when the pgfs are obtained through integration of
mass balance equations). However, de Hoog’s method
appears to be more accurate at degrees of polymerisation
where the distributions start to vanish. As an extra advan-
tage, assigning a suitable value to its parameter is a simple
matter. Garbow’s method also uses complex values of the
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Table 4
SSQ values for MWDs calculated with Garbow’s method

Polymer MWD Recovered from

ety pefy pefe
M2 Number 0.01770  6.31194 8.24223
Weight 0.02484  0.01507 8.03267
Chromatographic 0.35930  0.04345 0.03758
M7 Number 0.05702  6.79040 6.79115
Weight 0.04680  0.00880 6.46249
Chromatographic 0.08182  0.00372 0.00654
PS8 Number 0.20742  0.04828 0.41546
Weight 5.81754  0.08252 0.02308
Chromatographic 276 498.40000 21.33983 0.02449
PS4 Number 0.20732 16.87743  150.19330
Weight 0.20655  0.04446 16.92283
Chromatographic 0.20729  0.04439 0.00657
PE2 Number 0.83145  5.37322 6.23501
Weight 0.91824  0.00953 5.62563
Chromatographic 1.30702  0.01854 0.00041
PEI Number 0.18335 63.06179 1250.78100
Weight 1.08270  0.09744 3.59725
Chromatographic 1.24818  1.87269 0.00115
M3 Number 0.17101  6.45783 5.53822
Weight 0.17615  0.69897 51.36684
Chromatographic 0.30494  0.06119 0.00828

transformed variable. In addition to this, it has more para-
meters than the others, which complicates the process of
finding suitable values for them. Nevertheless, it is always
advisable to use several inversion methods to compare
results, in order to keep anomalous behaviour or numerical
problems with one particular method from obscuring the
real nature of the MWD [3].

3.1.4. Influence of the degree of polymerisation range
Setting the molecular weight range may result crucial to
the success of the recovery procedure, especially for narrow
distributions [2]. The results which are shown in Figs. 1 and
2 were obtained assuming a wide molecular weight range
(1.45 <log(Mi) <7.10). The calculated distributions
which are shown in Fig. 3 for the polystyrene standards
were obtained assuming 2.5 < log(Mi) < 3.7 for PS4 and
6. <log(Mi) < 7. for PS8. This range was selected in view
of our previous knowledge of the type of experimental
distributions. If there is no previous information about the
possible range of molecular weights, an iterative procedure
must be followed. In the case of narrow distributions such as
PS4 and PS8 the problem is more evident. In Figs. 2 and 3,
23 points of the distribution were evaluated. For the distri-
butions shown in Fig. 2, only around four points lie on the
curves, while the others are outside the actual distribution
ranges. As the range narrows (Fig. 3), more calculated
points lie on the actual distribution. It is surprising to find
that the experimental distribution is recovered correctly

from points calculated using different molecular weight
ranges. But when using an inappropriate range, computa-
tional effort is being wasted. This may become a particularly
bad problem when the inversion process is rather time-
consuming. In addition to this, avoiding the calculation of
the MWD at values of DP where the distribution is close to
vanishing improves the convergence of de Hoog’s and
Garbow’s methods.

3.1.5. Inversion of ‘noisy’ pgfs

In all the cases presented so far, the pgfs were calculated
directly from the actual experimental information. The
small numerical error associated with any ordinary alge-
braic calculation was considered unimportant, and so the
pefs were regarded as numerically noise-free. Nevertheless,
if the pgfs had been obtained through mass balance calcula-
tions, they should have been noisier due to the larger inher-
ent error involved in the numerical resolution of a system of
equations. We have previously shown [2] that an error with
rapidly fluctuating sign, such as random error, could
emulate the error due to the numerical integration of mass
balance equations. So, in order to estimate the influence of
noise on the quality of the recovered MWD curves, we
added random noise to the clean pgfs in different levels
(0.1 and 0.5% of the pgf clean value) and then inverted
the resulting pgfs using all the inversion methods. As an
example, the MWD, calculated in this way for polymer
M7 is shown in Fig. 4. Similar results were obtained for
the other polymers.

From these results it can be concluded that noise, in the
levels added to the pgfs, has little influence in the perfor-
mance of these methods. The algorithms analysed in Ref.
[2] also could reproduce appropriately MWDs from noisy
pgef, but they incorporated some ‘bumps’ to the curves.

3.2. Polymerisation examples

The inversion methods validated as explained before
were also applied to the calculation of MWDs from the
mass balance equations of polymerisation reactions. With
this purpose we chose some of the examples presented by
Miller et al. [13]. Miller calculates the MWDs by applying
the Laplace transform to the mass balance equations, and
then performs the inversion with an adapted version of
Garbow’s modification of Weeks’ method [10,11], and by
Talbot’s method [19], but the latter failed in all his
examples. In Part I of this work [1], we derived the pgf
equations that describe these polymerisation systems. Here
we also present the solution analytically or by direct
integration whenever possible for comparison purposes.
For details about the pgf transformation of the mass balance
equations, the reader is referred to Part I of this work [1].

Gear’s method for stiff problems [20] was used to solve
the systems of differential equations.

The cases considered are described in what follows.
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Fig. 3. Chromatographic distributions calculated with reduced rank. Lines:
experimental; A: Papoulis inversion; O: de Hoog inversion; l: Garbow
inversion.

3.2.1. Living polymerisation

A batch isothermal living polymerisation where mono-
mer concentration remains constant is considered here. This
simple system is described by the propagation reaction only.
The pgf equations were obtained in Part I of this work [1].
We considered two possible cases, the first one where zero-
length radicals were taken into account through extra-
polation and a second one where they were calculated
separately. The resulting pgf for each case were inverted
using the methods proposed in this work. For comparison
purposes we also integrated the mass balances for molecules
with up to 100 monomer units, as described elsewhere [1].
The chain length distributions obtained in this way are
compared with the ones recovered from the transform
domain.

Fig. 5a shows the chain length distribution for the first
case of the living polymerisation at a value of the dimen-
sionless time 7= 100, for the three inversion methods. It

10k |noise| < 0.5 % "clean pgf”

0.0

10 20 30 40 50 60 70 80
log(M ;)

Fig. 4. Inversion from noisy pgfs. Lines: experimental; A: Papoulis inver-
sion; O: de Hoog inversion; M: Garbow inversion.

may be observed that only the inversion with de Hoog’s
method follows the analytical solution accurately. The
curve obtained with Garbow’s method is identical to the
one obtained by Miller with his adapted version of
Garbow’s modification of Week’s method [13]. It is not
surprising that Garbow’s method failed, as it is not suitable

T=100

T | 1 | 1 1
70 80 90 100 110 120 130
DP;

0.16 |- (b)

0.12

0.08

n; [moI/m3]

0.04

0.00

0 25 50 75 100 125

Fig. 5. Chain length distribution for the living polymerisation. Lines: analy-
tical solution; A: Papoulis inversion; O: de Hoog inversion; l: Garbow
inversion. (a) R, calculated by extrapolation, (b) R, calculated separately.
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Table 5
Rate constants and initial conditions for the simple addition polymerisation

Parameter Value
Initiation rate constant 0.151/h
Propagation rate constant 500 1/mol h
Termination rate constant 5.0 /mol h
Initial monomer concentration 1.0 mol/l
Initial radical concentration 0

Initial radical pgf, 0

Initial polymer pgf;, 0

for sharp, discontinuous functions [10,13]. Papoulis’
method appears to have difficulties with this kind of
function, too, as the distribution it predicts is very different
from the analytical one.

Fig. 5b presents results for different residence times 7 for
the second case. The three inversion methods produce
almost identical results for the distributions, which are in
agreement with Miller’s results. However, Papoulis’
method predicts a slightly broader distribution at 7= 100.

3.2.2. Simple addition polymerisation

The kinetic equations that describe this process correspond
to initiation, propagation, chain transfer, and termination by
combination and disproportionation. Initial conditions and

n: x 10% (mol/l)

C 1
10 20 30 40 50 60 70 80 90 100
DPi

30 (b)

n: x 104 (mol/l)

10 20 30 40 50D 60 70 80 90 100
i

Fig. 6. (a) Polymer and (b) radical chain length distributions for the simple
addition polymerisation. Lines: analytical solution; A: Papoulis inversion;
O: de Hoog inversion; l: Garbow inversion.

balances for chemical species, and pgf transforms were
obtained in Part I of this work [1].

Table 5 shows the values for the rate constants and para-
meters of this model, which were taken from Miller et al.
[13]. Fig. 6a and b shows the radical and polymer chain
length distributions, respectively, for the simple addition
polymerisation when considering monomer as a different
species. For the polymer distribution, the three methods
provide results that coincide with the distribution obtained
from the direct integration of the balance equations. For the
radical distribution, Garbow’s method presents slight
oscillations at low degrees of polymerisation, and Papoulis’
method shows stronger oscillations.

If the terms corresponding to monomer are included when
performing the transformation of the polymer balance
equation (i.e. M = P), Papoulis’ and Garbow’s methods
fail. This is probably because of the discontinuity of several
orders of magnitude between the concentrations of mono-
mer (polymer of chain length 1), and polymer of chain
length 2. On the contrary, de Hoog’s method gives satisfac-
tory results with both approaches. A relative tolerance of
5% 107> was used with de Hoog’s method, and values of 14
and 5 X 1077 were assigned to parameters a and the relative
tolerance, respectively, in Garbow’s method.

3.2.3. Linear free radical polymerisation

This reaction is described by a kinetic system that
includes initiation, propagation, chain transfer and termina-
tion. Its pgf equations were deduced in Part I of this work.

Table 6 shows the values for rate constants and initial
concentrations for this system.

In Fig. 7a and b we show the calculated polymer number
and weight MWDs for this case. Papoulis’ and de Hoog’s
methods show similar results, in agreement with those
published by Miller. The results obtained with Garbow’s
method are also good, but present slight oscillations.

To achieve accurate results, the error tolerance used with
de Hoog’s and Garbow’s method had to be much lower than
the ones used in the validation, 1 X 10~ and 5 X 10712,
respectively. Parameter a of Garbow’s method was set to
8 to allow convergence with the error tolerance used.

For Papoulis’ method, Eq. (8) was used to calculate r, and
the number of subintervals in the DP range was equal to the
number of values of DP at which the MWDs were calcu-
lated. This means that r was recalculated for each DP. All
these changes with respect to the validation part of the work
stress the importance of having a method for the selection of
parameter values.

4. Conclusions

This work provides a demonstration of the recovery of
experimental MWDs from pgfs. Three methods for the
numerical inversion of Laplace transforms were adapted
to be used with pgfs.
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Table 6

Rate constants and initial conditions for the linear free radical polymerisa-
tion

Parameter Value

Initiator decomposition rate 15%x1075s7!

constant

Propagation rate constant
Transfer to solvent rate constant
Transfer to monomer rate
constant

Termination rate constant (k,)
Termination by combination rate
constant

Termination by
disproportionation rate constant
Volume contraction factor
Initiation efficiency

Initial initiator concentration
Initial monomer concentration
Initial solvent concentration

7.594 % 10 I/mol s
3.31 X 1072 /mol s
1.78 X 102 I/mol s

3.45% 10" I/mol s
0.7k,

0.3k,

—0.11

0.3

0.01508 mol/l
4.32 mol/l
4.91 mol/1

An experimental validation was successfully performed
for the three inversion methods. Techniques for setting
values to the method parameters were developed, compar-
ing calculated with real polymer MWDs.

On the whole, the results are of the same degree of
accuracy when using either of the three inversion methods.
Each of them has particular advantages and disadvantages
from the operational point of view. Papoulis’ method is the
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Fig. 7. Polymer length distributions for the linear free radical polymerisa-
tion. A: Papoulis inversion; O: de Hoog inversion; l: Garbow inversion.

most economical one in computational effort. However, de
Hoog’s method appears to be more accurate, especially at
the low and high molecular weight tails of the distributions.
Furthermore, it is easy to find appropriate values for its
parameter. Garbow’s method has more parameters than
the other two, making it harder to find suitable values for
all of them. As an added difficulty, de Hoog’s and Garbow’s
methods use complex values of the transformed variable,
leading to a larger system of equations since the real and
the complex parts must be treated separately.

The addition of noise to the original pgfs and the sub-
sequent inversion of the noisy transforms show that error
propagation has little effect on the performance of the
studied inversion methods.

We have also shown that the three methods can be
successfully applied to the calculation of MWD through
the inversion of pgfs obtained through the integration of
mass balance equations. In these cases, de Hoog’s method
gave the best results with respect to accuracy, showing good
performance with MWDs of ‘difficult’ shapes. However, it
requires integrating twice as many differential equations as
those required by Papoulis’ method, something that may be
a serious shortcoming for some systems.

Work is under way in the application of pgf transforms to
mass balances that describe more realistic systems, such as
reactive extrusion of high density polyethylene [21] and
controlled rheology of polypropylene.
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